Simheuristics for the Multiobjective Nondeterministic Firefighter Problem in a Time-Constrained Setting

نویسندگان

  • Krzysztof Michalak
  • Joshua D. Knowles
چکیده

The firefighter problem (FFP) is a combinatorial problem requiring the allocation of ‘firefighters’ to nodes in a graph in order to protect the nodes from fire (or other threat) spreading along the edges. In the original formulation the problem is deterministic: fire spreads from burning nodes to adjacent, unprotected nodes with certainty. In this paper a nondeterministic version of the FFP is introduced where fire spreads to unprotected nodes with a probability Psp (lower than 1) per time step. To account for the stochastic nature of the problem the simheuristic approach is used in which a metaheuristic algorithm uses simulation to evaluate candidate solutions. Also, it is assumed that the optimization has to be performed in a limited amount of time available for computations in each time step. In this paper online and offline optimization using a multipopulation evolutionary algorithm is performed and the results are compared to various heuristics that determine how to place firefighters. Given the time-constrained nature of the problem we also investigate for how long to simulate the spread of fire when evaluating solutions produced by an evolutionary algorithm. Results generally indicate that the evolutionary algorithm proposed is effective for Psp ≥ 0.7, whereas for lower probabilities the heuristics are competitive suggesting that more work on hybrids

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multiobjective Imperialist Competitive Evolutionary Algorithm for Solving Nonlinear Constrained Programming Problems

Nonlinear constrained programing problem (NCPP) has been arisen in diverse range of sciences such as portfolio, economic management etc.. In this paper, a multiobjective imperialist competitive evolutionary algorithm for solving NCPP is proposed. Firstly, we transform the NCPP into a biobjective optimization problem. Secondly, in order to improve the diversity of evolution country swarm, and he...

متن کامل

Quasi-Newton Methods for Nonconvex Constrained Multiobjective Optimization

Here, a quasi-Newton algorithm for constrained multiobjective optimization is proposed. Under suitable assumptions, global convergence of the algorithm is established.

متن کامل

The Sim-EA Algorithm with Operator Autoadaptation for the Multiobjective Firefighter Problem

The firefighter problem is a graph-based optimization problem that can be used for modelling the spread of fires, and also for studying the dynamics of epidemics. Recently, this problem gained interest from the softcomputing research community and papers were published on applications of ant colony optimization and evolutionary algorithms to this problem. Also, the multiobjective version of the...

متن کامل

The Exact Solution of Min-Time Optimal Control Problem in Constrained LTI Systems: A State Transition Matrix Approach

In this paper, the min-time optimal control problem is mainly investigated in the linear time invariant (LTI) continuous-time control system with a constrained input. A high order dynamical LTI system is firstly considered for this purpose. Then the Pontryagin principle and some necessary optimality conditions have been simultaneously used to solve the optimal control problem. These optimality ...

متن کامل

A Multi-Mode Resource-Constrained Optimization of Time-Cost Trade-off Problems in Project Scheduling Using a Genetic Algorithm

In this paper, we present a genetic algorithm (GA) for optimization of a multi-mode resource constrained time cost trade off (MRCTCT) problem. The proposed GA, each activity has several operational modes and each mode identifies a possible executive time and cost of the activity. Beyond earlier studies on time-cost trade-off problem, in MRCTCT problem, resource requirements of each execution mo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016